Suffolk County Vector Control & Wetlands Management Long Term Plan & Environmental Impact Statement

Task 3 Literature Review Book 5 Part 1: Mosquitoes Control Agents

Prepared for:

Suffolk County Department of Public Works Suffolk County Department of Health Services Suffolk County, New York

Prepared by:

CASHIN ASSOCIATES, P.C. 1200 Veterans Memorial Highway, Hauppauge, NY

CAMERON ENGINEERING & ASSOCIATES, LLP 3 Aerial Way, Suite 100, Syosset, NY

November 2004

SUFFOLK COUNTY VECTOR CONTROL AND WETLANDS MANAGEMENT LONG - TERM PLAN AND ENVIRONMENTAL IMPACT STATEMENT

PROJECT SPONSOR

Steve Levy Suffolk County Executive

Department of Public Works

Charles J. Bartha, P.E. Commissioner Richard LaValle, P.E. Chief Deputy Commissioner Leslie A. Mitchel Deputy Commissioner

Department of Health Services

Brian L. Harper, M.D., M.P.H. Commissioner Vito Minei, P.E. Director, Division of Environmental Quality

PROJECT MANAGEMENT

Project Manager: Walter Dawydiak, P.E., J.D. Chief Engineer, Division of Environmental Quality, Suffolk County Department of Health Services

<u>Suffolk County Department of</u> <u>Public Works, Division of Vector</u>

<u>Control</u> Dominick V. Ninivaggi Superintendent Tom Iwanejko Entomologist Mary E. Dempsey Biologist

<u>Suffolk County Department of</u> Health Services, Office of Ecology

Martin Trent Acting Chief Kim Shaw Bureau Supervisor Robert M. Waters Bureau Supervisor Laura Bavaro Senior Environmental Analyst Erin Duffy Environmental Analyst Phil DeBlasi Environmental Analyst Jeanine Schlosser Principal Clerk

SUFFOLK COUNTY LONG TERM PLAN CONSULTANT TEAM

Cashin Associates, P.C.	Hauppauge, NY
Subconsultants	
Cameron Engineering, L.L.P.	Syosset, NY
Integral Consulting	Annapolis, MD
Bowne Management Systems, Inc.	Mineola, NY
Kamazima Lwiza, PhD	Stony Brook University, Stony Brook, NY
Ducks Unlimited	Stony Brook, NY
Steven Goodbred, PhD & Laboratory	Stony Brook University, Stony Brook, NY
RTP Environmental	Westbury, NY
Sinnreich, Safar & Kosakoff	Central Islip, NY
Bruce Brownawell, PhD & Laboratory	Stony Brook University, Stony Brook, NY
Anne McElroy, PhD & Laboratory	Stony Brook University, Stony Brook, NY
Andrew Spielman, PhD	Harvard School of Public Health, Boston, MA
Richard Pollack, PhD	Harvard School of Public Health, Boston, MA
Wayne Crans, PhD	Rutgers University, New Brunswick, NJ
Susan Teitelbaum, PhD	Mount Sinai School of Medicine, NY
Zawicki Vector Management Consultants	Freehold, NJ
Michael Bottini, Turtle Researcher	East Hampton, NY
Robert Turner, PhD & Laboratory	Southampton College, NY
Christopher Gobler, PhD & Laboratory	Southampton College, NY
Jerome Goddard, PhD	Mississippi Department of Health, Jackson, MS
Sergio Sanudo, PhD & Laboratory	Stony Brook University, Stony Brook, NY
Suffolk County Department of Health Services, Division of Environmental Quality	Hauppauge, NY

Primary research for this report was conducted by Cameron Engineering (personnel including John Pascucci, PE). It was edited and revised in response to comments by Cameron Engineering (personnel including John Pascucci, PE) and Cashin Associates (personnel including David Tonjes, PhD). Review was provided by Integral Consulting (personnel including Judi Durda), Suffolk County Department of Public Works, Division of Vector Control (personnel including Dominic Ninivaggi, Mary Dempsey, and Tom Iwanjeko), and Suffolk County Department of Health Services (personnel including Amy Juchatz, Erin Duffy and Kim Shaw). Additional comments have been received from members of the Technical Advisory Committee.

TABLE OF CONTENTS

1.	MOSQUITO CONTROL AGENTS	.1
2.	MOSQUITO CONTROL AGENT PRIORITY LIST	.8
	2.2.1. Bacteriological Control (Biopesticides)	.9
	2.2.2. Insect Growth Regulators	.9
	2.2.3. Surface Films	.9
	2.2.4. Chemical Control	.9
	2.2.5. Repellants	11

TABLE OF TABLES

Table 2-1 - Mosquito Control Agents in Common Use	3
Table 2-2 - Mosquito Control Agencies Contacted	4
Table 2-3 - Mosquito Control Substances - Adulticides	5
Table 2-4 - Mosquito Control Substances - Larvicides	6
Table 2-5 - Mosquito Control Substances – Other Substances	7
Table 2-6 - Primary Mosquito Control Agents	8
Table 2-7 - Secondary Mosquito Control Agents	8

Executive Summary

This section of the Suffolk County Vector Control and Wetlands Management Long-Term Plan and Generic Environmental Impact Statement addresses the literature review on mosquito control agents. Despite great strides over the last 50 years, mosquito-borne illnesses continue to pose significant risks to parts of the population in the United States. An extensive survey of Mosquito Control agencies outside Suffolk County was conducted to develop an inclusive list of agents and chemicals used to control mosquito populations.

Humans have a history of controlling mosquitoes, and other creatures considered "pests" with substances known as pesticides. Pesticides are agents of biological or chemical origin that control the target organism by killing it or preventing it from engaging in behaviors deemed to be destructive. An emergence in pesticide use began after World War II with the introduction of synthetic organic compounds, the most important of which was DDT. These new chemicals were inexpensive, effective, and enormously popular. During the last 50 years chemical synthesis of pesticides has increased considerably. There are now more than 55 classes and 1,500 individual substances produced in more than 100,000 formulations of pesticides.

Pesticides utilized for mosquito control, historically and presently, are divided into the following classes: *Organochlorines* (e.g.-DDT), *Organophosphates* (e.g.-Malathion), *Pyrethroids* (e.g.-Resmethrin, Sumithrin), *Insect Growth Regulators* (e.g.-Methoprene), *Microbials* (e.g.-Bacillus thuringiensis israelensis [*Bti*]), and *Synergists* (e.g.-Piperonyly Butoxide).

1. Mosquito Control Agents Utilized Outside of Suffolk County

An extensive survey of Mosquito Control agencies outside Suffolk County was conducted to develop an inclusive list of agents and chemicals used to control mosquito populations. Particular effort was placed on regional mosquito control programs. However, other areas of the country were included to examine the spectrum of mosquito control agents utilized under a variety of environmental conditions.

Research methods included e-mail contact with individual Mosquito Control agencies, Internet website investigations, and phone interviews. Initially, e-mail requests were sent to various state and local jurisdictions. Those were followed by website information documentation, and phone calls to clarify specific details. The survey yielded fourteen mosquito control agents that are in common use by the various reporting agencies (Table 2-1).

A complete list of the agencies contacted for information is presented in Table 2-2 on the next page. The results of the survey are presented on the following pages in three (3) tables: Adulticides (Table 2-3), Larvicides (Table 2-4), and Other Control Agents (Table 2-5).

ACTIVE INGREDIENT	PRODUCT TRADE NAME	CLASS	FORMULATIONS	
Bacteriological Control				
Bti (Bacillus thuringiensis israelensis)	Aquabac / Bactimos / Vectobac / Teknar	Larvicide	Liquid / granules / briquets	
Bs (Bacillus sphaericus)	Vectolex	Larvicide	Liquid / granules	
Insect Growth Regulators				
Methoprene	Altosid	Larvicide	Liquids / granules / briquets	
Surface Films				
Petroleum Derivatives	Golden Bear Oil (GB-1111) / Bonide / BVA Oil 13	Larvicide / Pupicide	Liquid	
Ethoxylated Alcohol	Agnique MMF	Larvicide / Pupicide	Liquid	
Chemical Control				
Temephos	Abate	Larvicide	Liquids / granules / briquets	
Malathion	Fyfanon / Atrapa / Microflo	Adulticide	ULV aerosol / thermal fog	
Resmethrin	Scourge	Adulticide	ULV aerosol	
Sumithrin	Anvil	Adulticide	ULV aerosol	
Permethrin	Permanone / Aqua Reslin	Adulticide	ULV aerosol / barrier treatment	
Natural Pyrethrum	Pyrocide / Pyrenone	Adulticide / limited larvicide use	ULV aerosol	
Fenthion	Baytex / Entex / Tiguvon	Adulticide	ULV aerosol / thermal fog	
Naled	Dibrom / Trumpet	Adulticide	ULV aerosol	
Chlorpyrifos	Dursban / Lorsban	Adulticide / limited larvicide use	ULV aerosol	

Table 2-1 - Mosquito Control Agents in Common Use

Agencies Contacted to Compile Pesticide List:

California - Contra Costa; Coachella Valley; Marin & Sonoma; Los Angeles West; San Gabriel Valley; Shasta; Sutter-Yuba Connecticut - Dept. of Environmental Protection Delaware – Dept. of Natural Resources Florida - East Flagler; Florida Keys; Leon; Manatee; Miami-Dade Maryland – Dept. of Agriculture Massachusetts - Bristol; Cape Cod; Central; East Middlesex; Northeast; Norfork; Plymouth; Sussex Michigan - Saginaw; Tuscola Minnesota - Metropolitan (Minneapolis, St. Paul) New Jersey - Dept. of Environmental Protection; Atlantic; Bergen; Camden; Hunterdon; Mercer; Middlesex; Monmouth; Morris; Passaic; Union; Warren New York - New York City; Nassau

Pennsylvania - Dept. of Environmental Protection

STATE	AGENCIES CONTACTED				
California	Alameda County Mosquito Abatement District	San Gabriel Valley Mosquito and Vector Control District			
	Coachella Valley Mosquito and Vector Control District	 San Mateo County Mosquito Abatement District 			
	Contra Costa Mosquito and Vector Control District	Santa Barbara Coastal Vector Control District			
	Greater Los Angeles County Vector Control District	Santa Clara Vector Control District			
	Los Angeles County West Vector Control District	 Shasta Mosquito and Vector Control District 			
	Marin/Sonoma Mosquito Vector Control District	 Sutter-Yuba Mosquito and Vector Control District 			
	Sacramento-Yolo Mosquito and Vector Control District				
Connecticut	State Department of Environmental Protection				
Delaware	State Department of Natural Resources				
Florida	Amelia Island Mosquito Control District	Lee County Mosquito Control District			
	Beach Mosquito Control District	Leon County Mosquito Control			
	Broward County Mosquito Control Section	Levy County Mosquito Control			
	East Flagler Mosquito Control District	Manatee County Mosquito Control District			
	Florida Keys Mosquito Control District	Miami-Dade Mosquito Control			
Maryland	State Department of Agriculture				
Massachusetts	Berkshire County Mosquito Control Project	 Norfolk County Mosquito Control Project 			
	Bristol County Mosquito Control Project	 Northeast Mosquito and Wetlands Management District 			
	Cape Cod Mosquito Control Project	Plymouth County Mosquito Control Project			
	Central Massachusetts Mosquito Control Project	Sussex County Division of Mosquito Control			
	East Middlesex Mosquito Control Project				
Michigan	Saginaw County Mosquito Abatement Commission	Tuscola County Mosquito Abatement			
Minnesota	Metropolitan Mosquito Control District				
New Jersey	State Department of Environmental Protection	Mercer County Division of Mosquito Control			
	Atlantic County Office of Mosquito Control	Middlesex County Mosquito Extermination Commission			
	Bergen County Division of Mosquito Control	Monmouth County Mosquito Extermination Commission			
	Burlington County Mosquito Control	Morris County Mosquito Extermination Commission			
	Camden County Mosquito Extermination Commission	Ocean County Mosquito Extermination Commission			
	Cape May County Mosquito Extermination Commission	 Passaic County Division of Mosquito Extermination 			
	Cumberland County Mosquito Control Division	 Salem County Mosquito Extermination Commission 			
	Essex County Mosquito Control	 Somerset County Mosquito Extermination Commission 			
	Gloucester County Division of Mosquito Control	 Sussex County Division of Mosquito Control 			
	Hudson County Mosquito Control	Union County Mosquito Extermination Commission			
	Hunterdon County Mosquito Control	Warren County Mosquito Extermination Commission			
New York	Nassau County Department of Public Works	New York City Department of Health			
Pennsylvania	State Department of Environmental Protection				

Table 2-2 - Mosquito Control Agencies Contacted

Category	Malathion	Resmethrin	Sumithrin	Permethrin	Naled	Pyrethrum	Deltamethrin
NYS Registration? (Y/N)	Y	Y	Y	Y	Y	Y	Y
Class of Control: adulticide (A), barrier (B)	Α	Α	Α	A/B	Α	Α	В
EPA Biopesticide? (Y/N)	N/OP	N/P	N/P	N/P	N/OP	Y	N/P
Chem. Class: Organo-Phosphate (OP), Pyrethroid (P)							
SCVC past use? (Y/N)	Y	Y	Y	Y	Y	Ν	Y
SCVC current use? (Y/N)	Y	Y	Y	N	N	Ν	Y
Use in NE US? (Y/N)	Y/W	Y/W	Y/W	Y/W	Y/R	Y/R	S
Widespread (W), Scattered (S), Rare (R)							
Use on East Coast? (Y/N)	Y/W	Y/W	Y/W	Y/W	Y/W	Y/R	S
Widespread (W), Scattered (S), Rare (R)							
Use elsewhere US? (Y/N)	Y/S	Y/W	Y/W	Y/W	Y/W	Y/R	S
Widespread (W), Scattered (S), Rare (R)							
Persistence (short, medium, long)	Medium	Short	Short	Medium	Short	Short	Long
EPA Toxicity Class ¹	III	III	III	II/III	Ι	III	III
Label restrictions	Restricted	No water	No	100 ft. water	Bee	Restrictions	Restrictions near
	near water,	setback,	significant	setback, bee	restrictions	near water	water
	bees	.007lb. AI/	restrictions,	restriction			
		acre	.0035lb.				
			AI/acre				
Generalized/Specialized Use	Hand ULV,	Truck ULV,	Hand ULV,	Hand ULV,	Ground	Ground	Barrier spray
	aerial ULV,	aerial ULV	truck ULV,	truck ULV,	ULV, aerial	ULV, aerial	
	thermal fog		aerial ULV	aerial ULV,	ULV	ULV	
				barrier spray			
Advantages	Less weather	Nearly non-	Nearly non-	Nearly non-	Effective in	Exempt from	
	dependent	toxic to birds,	toxic to birds	toxic to birds	wide range of	crop	
		rapid			conditions	tolerances	
		knockdown					
Disadvantages	slow		slower	slower	toxic to birds,		Highly toxic to
	degradation		breakdown	degradation	fish, bees,		fish, aquatic
			than	than other	corrosive		invertebrates, bees
			Resmethrin	ULV			
				Pyrethroids			

Table 2-3 - Mosquito Control Substances - Adulticides

1. The EPA classifies pesticides by four classes of toxicity, with Class I being the most toxic and Class IV being the least toxic.

Category	Bacillus thuringiensis israelensis	Bacillus spaericus	Methoprene	Ethoxylated Fatty Acids	Golden Bear Oil	Temephos
NYS Registration? (Y/N)	Y	Y	Y	Y	Y	Y
Class of Control: larvicide (L), pupacide (P)	L	L	L	L/P	L/P	L
EPA Biopesticide? (Y/N)	Y	Y	Y	N	N	N/OP
Chem. Class: Organo-Phosphate (OP), Pyrethroid (P)						
SCVC past use? (Y/N)	Y	Y	Y	Ν	Ν	Y
SCVC current use? (Y/N)	Y	Y	Y	Ν	Ν	N
Use in NE US? (Y/N),	Y/W	Y/W	Y/W	Y/S	Y/S	Y/S
Widespread (W), Scattered (S), Rare (R)						
Use on East Coast? (Y/N),	Y/W	Y/W	Y/W	Y/S	Y/S	Y/W
Widespread (W), Scattered (S), Rare (R)						
Use elsewhere in US? (Y/N),	Y/W	Y/W	Y/W	Y/S	Y/S	Y/W
Widespread (W), Scattered (S), Rare (R)						
Persistence (short, medium, long)	Short	Medium	Short	Medium	Medium	Medium
EPA Toxicity Class ¹	IV	IV	IV	III	III	III
Label restrictions			Fish habitats for some formulations in New York			
Generalized/Specialized Use	Salt marsh, Freshwater, Flood areas	Ditches, catch basins	Salt marsh, drainage areas, catch basins	Variety of habitats, best in containers, artificial breeding sites	Variety of habitats, best in containers, artificial breeding sites	Variety of habitats, stored tires
Advantages	Immediate control, non-toxic to other species, resistance highly unlikely	Best in permanent water	Larvae remain as food source, highly effective in salt marsh			
Disadvantages		residual action		Potential adverse impact to non- targets that use surface film	Potential adverse impact to non-targets that use surface film	Toxic to fish, birds, bees

Table 2-4 - Mosquito Control Substances - Larvicides

1. The EPA classifies pesticides by four classes of toxicity, with Class I being the most toxic and Class IV being the least toxic.

Table 2-5 - Mosquito Control Substances – Other Substances							
Category	Garlic Oil	Malaoxon	Isomalathion	Piperonyl butoxide			
NYS Registration? (Y/N)	N	Not Applicable	Not Applicable	Y			
Class of Control: barrier (B), synergist (S), degradate (D)	В	D	D	S			
EPA Biopesticide? (Y/N)	Y	Ν	N	N			
SCVC past use? (Y/N)	Y			Y			
SCVC current use? (Y/N)	Y			Y			
Use in NE US? (Y/N)	Y/S			Y/W			
Widespread (W), Scattered (S), Rare (R)							
Use on East Coast? (Y/N)	Y/S			Y/W			
Widespread (W), Scattered (S), Rare (R)							
Use elsewhere US? (Y/N)	Y/S			Y/W			
Widespread (W), Scattered (S), Rare (R)							
Persistence (short, medium, long)	Long						
EPA Toxicity Class	Not Applicable	Not Applicable	Not Applicable	Not Applicable			
Label restrictions							
Generalized/Specialized Use	Outdoor area repellant						
Advantages	EPA exempt,						
	non-toxic						
Disadvantages							

2. Mosquito Control Agent Priority List

Mosquito Control Agents are further categorized in this document into Primary and Secondary areas of investigation with appropriate investigative levels assigned to each. A complete and extensive literature review will follow on Primary agents. Secondary agents will receive a substantial, but less in-depth review. The results of the categorization effort are presented in Table 2-6 and Table 2-7. The discussion following the tables summarizes how each of the agents was categorized.

AGENT	CLASS	TRADE NAME
Bti (Bacillus thuringiensis israelensis)	Larvicide	Vectobac, Teknar
Bs (Bacillus sphaericus)	Larvicide	Vectolex
Methoprene	Larvicide	Altosid
Garlic Oil	Repellant	Garlic Barrier
Malathion	Adulticide	Fyfanon, Atrapa
Resmethrin	Adulticide	Scourge
Sumithrin	Adulticide	Anvil
Permethrin	Adulticide	Permanone
Malaoxon	Degradate	
Isomalathion	Degradate	
Piperonyl butoxide	Synergist	

Table 2-6 - Primary Mosquito Control Agents

AGENT	CLASS	TRADE NAME
Ethoxylated Fatty Alcohols	Larvicide/Pupicide	Agnique
Temephos	Larvicide	Abate
Naled	Adulticide	Dibrom, Trumpet
Pyrethrum	Adulticide	Pyrocide, Pyrenone
Deltamethrin	Adulticide	Decis
Golden Bear Oil	Larvicide/Pupicide	GB-1111
DEET	Repellant	
Fenthion	Adulticide	Baytex, Entex
Chloripyrifos	Adulticide	Dursban, Lorsban
Octanol	Used in Traps	
Propane	Used in Traps	

Table 2-7 - Secondary Mosquito Control Agents

2.2.1. Bacteriological Control (Biopesticides)

Bti and Bs are microbial larvicides, and both are naturally occurring bacterium. When ingested by the mosquito larvae, they disrupt the natural digestion process, causing the larvae to die. They are believed to pose a minimal risk to non-target species, are widely used throughout the country, and will be given Primary consideration.

2.2.2. Insect Growth Regulators

Methoprene is a slightly to practically nontoxic compound in EPA Toxicity Class IV. It mimics the action of a mosquito growth-regulating hormone and prevents the larvae from maturing into adults. There are no significant label restrictions on its use. Methoprene has low toxicity to birds and fish, is widely used for mosquito control, and will be given Primary consideration.

2.2.3. Surface Films

Petroleum derivatives (*e.g.* Golden Bear Oil) spread a thin film on the surface of the water, which prevents the transfer of oxygen causing the mosquito larvae/pupae to drown. Ethoxylated Alcohols (Agnique) spread a thin surface film, which makes it difficult for mosquito larvae, pupae, and emerging adults to attach to the water's surface, also causing them to drown. The window of opportunity for use of these agents is limited within the mosquito life cycle. These agents also prevent the natural transfer of oxygen into the water body. There are also potential impacts to non-target species that rest on the water surface, such as dragonflies and water skimmers. Although they are used by some agencies around the country, their potential is for limited use, where non-target impacts are not of concern. They will therefore be given Secondary consideration.

2.2.4. Chemical Control

Other than Temephos, which is a larvicide, all of the agents listed are adulticides, which kill adult mosquitoes by bringing them in direct contact with a toxic chemical. Temephos is an organophosphate pesticide, and it is the only organophosphate with larvicidal use. Although it presents relatively low risk to birds and terrestrial species, available information suggests that it is more toxic to aquatic invertebrates than alternative larvicides. EPA is limiting its use to areas

where less hazardous alternatives would not be effective. Many current users are limiting its application to pooled water in stored tires. It will be given Secondary consideration.

Resmethrin and Sumithrin are synthetic chemical pesticides that act in a similar manner to pyrethrins, which are derived from chrysanthemum flowers. They are relatively low in toxicity, EPA Toxicity Class III, and do not have significant label restrictions. They are applied as an ultra low volume (ULV) aerosol, which kills adult mosquitoes on contact. Resmethrin and Sumithrin are currently part of the Suffolk County program and will, therefore, be given Primary consideration. Permethrin, as a similar pyrethroid compound being used elsewhere in the country, will also be given Primary consideration. Pyrethroids used in mosquito control are typically mixed with a synergist compound, such as Piperonyl Butoxide, which enhances the effectiveness of the active ingredient. Piperonyl Butoxide will be given Primary consideration.

Malathion is an organophosphate pesticide that is applied as a ULV aerosol, which kills adult mosquitoes on contact. As a component of Suffolk County's current program, it will be given Primary consideration. Malaoxon and Isomalathion, breakdown products of Malathion, will also be given Primary consideration.

Naled is another organophosphate pesticide that is applied as a ULV aerosol. Most use of Naled for mosquito control is in the southern states. There is potential for acute, and some potential for chronic risks to freshwater invertebrates from the use of Naled. Because of its high toxicity, EPA Toxicity Class I, Naled will be given Secondary consideration.

Pyrethrum is a naturally occurring pesticide that is derived from the chrysanthemum flower. It is more expensive to produce than the synthetic pyrethroids, which demonstrate the same efficacy against mosquito populations. It will be given Secondary consideration.

Deltamethrin is considered the most persistent of the synthetic pyrethroids, demonstrating a broad spectrum of toxic effects. Although not reported as a mosquito control agent in our survey, it is included in the literature search as a synthetic pyrethroid with applicability in this area. It can be used as a barrier treatment where its persistence is an advantage. It will be given Secondary consideration.

Fenthion and Chlorpyrifos are organophosphate pesticides with historical use for mosquito control. Both display moderate toxicity to mammals and high toxicity to birds. There was little reported use of these agents, which was primarily in the south, where its use is being phased out. They will be given Secondary consideration.

Also given Secondary consideration are DEET, Octanol, and Propane. DEET is used for personal protection from mosquitoes, and is often the preferred product in government publications. Octanol and propane are utilized in mosquito traps. It is possible that the Long-Term Plan developed in this project may lead to greater or lesser use of these products, and the impacts of those changes should be considered.

2.2.5. Repellants

Garlic oil has been tested as a repellant in public outdoor areas. Because of its potential for inclusion in the County's Long-Term Plan, it will be given Primary consideration.