DRAFT GENERIC ENVIRONMENTAL IMPACT STATEMENT

SUFFOLK COUNTY VECTOR CONTROL AND WETLANDS MANAGEMENT LONG-TERM PLAN

Name and Address of Lead Agency
County of Suffolk
Office of the County Executive
H. Lee Dennison Building
100 Veterans Memorial Highway
Hauppauge, New York 11788

Contact Name: Mr. James Bagg
Chief Environmental Analyst
County of Suffolk
(631) 853-5203

Prepared by: Cashin Associates, P.C.
1200 Veterans Memorial Highway
Hauppauge, New York 11788

Date Accepted: ___________
Date of Public Hearing: ___________
Date Written Comments Due By: ___________
SUFFOLK COUNTY VECTOR CONTROL AND WETLANDS MANAGEMENT
LONG-TERM PLAN AND ENVIRONMENTAL IMPACT STATEMENT

PROJECT SPONSOR

Steve Levy
Suffolk County Executive

Department of Environment and Energy
Michael Deering
Commissioner

Department of Public Works
Charles J. Bartha, P.E.
Commissioner
Richard LaValle, P.E.
Chief Deputy Commissioner
Leslie A. Mitchel
Deputy Commissioner

Department of Health Services
Brian L. Harper, M.D., M.P.H.
Commissioner
Vito Minei, P.E.
Director, Division of Environmental Quality

PROJECT MANAGEMENT

Project Manager: Walter Dawydiak, P.E., J.D.
Chief Engineer, Division of Environmental Quality, Suffolk County Department of Health Services

Suffolk County Department of Public Works, Division of Vector Control
Dominick V. Ninivaggi
Superintendent
Tom Iwanejko
Entomologist
Mary E. Dempsey
Biologist

Suffolk County Department of Health Services, Office of Ecology
Martin Trent
Chief
Kim Shaw
Bureau Supervisor
Robert M. Waters
Bureau Supervisor
Laura Bavaro
Senior Environmental Analyst
Erin Duffy
Environmental Analyst
Phil DeBlasi
Environmental Analyst
Jeanine Schlosser
Principal Clerk
Suffolk County Long Term Plan Consultant Team

<table>
<thead>
<tr>
<th>Cashin Associates, P.C.</th>
<th>Hauppauge, NY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subconsultants</td>
<td></td>
</tr>
<tr>
<td>Cameron Engineering, L.L.P.</td>
<td>Syosset, NY</td>
</tr>
<tr>
<td>Integral Consulting</td>
<td>Annapolis, MD</td>
</tr>
<tr>
<td>Bowne Management Systems, Inc.</td>
<td>Mineola, NY</td>
</tr>
<tr>
<td>Kamazima Lwiza, PhD</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>Ducks Unlimited</td>
<td>Stony Brook, NY</td>
</tr>
<tr>
<td>Steven Goodbred, PhD & Laboratory</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>RTP Environmental</td>
<td>Westbury, NY</td>
</tr>
<tr>
<td>Sinnreich, Safar & Kosakoff</td>
<td>Central Islip, NY</td>
</tr>
<tr>
<td>Bruce Brownawell, PhD & Laboratory</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>Anne McElroy, PhD & Laboratory</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>Andrew Spielman, PhD</td>
<td>Harvard School of Public Health, Boston, MA</td>
</tr>
<tr>
<td>Richard Pollack, PhD</td>
<td>Harvard School of Public Health, Boston, MA</td>
</tr>
<tr>
<td>Masahiko Hachiya, PhD</td>
<td>Harvard School of Public Health, Boston, MA</td>
</tr>
<tr>
<td>Wayne Crans, PhD</td>
<td>Rutgers University, New Brunswick, NJ</td>
</tr>
<tr>
<td>Susan Teitelbaum, PhD</td>
<td>Mount Sinai School of Medicine, NY</td>
</tr>
<tr>
<td>Zawicki Vector Management Consultants</td>
<td>Freehold, NJ</td>
</tr>
<tr>
<td>Michael Bottini, Turtle Researcher</td>
<td>East Hampton, NY</td>
</tr>
<tr>
<td>Robert Turner, PhD & Laboratory</td>
<td>Southampton College, NY</td>
</tr>
<tr>
<td>Christopher Gobler, PhD & Laboratory</td>
<td>Southampton College, NY</td>
</tr>
<tr>
<td>Jerome Goddard, PhD</td>
<td>Mississippi Department of Health, Jackson, MS</td>
</tr>
<tr>
<td>Sergio Sanudo, PhD & Laboratory</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>Robert Cerrato, PhD</td>
<td>Stony Brook University, Stony Brook, NY</td>
</tr>
<tr>
<td>Suffolk County Department of Health Services, Division of Environmental Quality</td>
<td>Hauppauge, NY</td>
</tr>
</tbody>
</table>
SUFFOLK COUNTY VECTOR CONTROL AND WETLANDS MANAGEMENT LONG-TERM MANAGEMENT PLAN

DRAFT GENERIC ENVIRONMENTAL IMPACT STATEMENT
Table of Contents

Executive Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1. Introduction and Long-Term Plan Summary</td>
<td>ES-1</td>
</tr>
<tr>
<td>ES-1.1 Introduction</td>
<td>ES-1</td>
</tr>
<tr>
<td>ES-1.2 Long-Term Plan Summary</td>
<td>ES-2</td>
</tr>
<tr>
<td>ES-2 Need for Action</td>
<td>ES-9</td>
</tr>
<tr>
<td>ES-2.1 Policy Justification for Mosquito Control</td>
<td>ES-9</td>
</tr>
<tr>
<td>ES-2.2 Legal Justification for Mosquito Control</td>
<td>ES-16</td>
</tr>
<tr>
<td>ES-3. Long-Term Plan Elements</td>
<td>ES-19</td>
</tr>
<tr>
<td>ES-3.1 Management Plan Approach</td>
<td>ES-19</td>
</tr>
<tr>
<td>ES-3.2 Public Education and Outreach</td>
<td>ES-25</td>
</tr>
<tr>
<td>ES-3.3 Surveillance</td>
<td>ES-27</td>
</tr>
<tr>
<td>ES-3.4 Source Reduction</td>
<td>ES-34</td>
</tr>
<tr>
<td>ES-3.5 Biocontrols</td>
<td>ES-48</td>
</tr>
<tr>
<td>ES-3.6 Larval Control</td>
<td>ES-49</td>
</tr>
<tr>
<td>ES-3.7 Adult Control</td>
<td>ES-57</td>
</tr>
<tr>
<td>ES-3.8 Administration</td>
<td>ES-84</td>
</tr>
<tr>
<td>ES-3.9 Adaptive Management</td>
<td>ES-88</td>
</tr>
<tr>
<td>ES-4. Potential Impacts for the Long-Term Plan and Mitigation of Impacts</td>
<td>ES-90</td>
</tr>
<tr>
<td>ES-4.1 Public Education and Outreach</td>
<td>ES-90</td>
</tr>
<tr>
<td>ES-4.2 Surveillance</td>
<td>ES-92</td>
</tr>
<tr>
<td>ES-4.3 Source Reduction</td>
<td>ES-95</td>
</tr>
<tr>
<td>ES-4.4 Water Management</td>
<td>ES-97</td>
</tr>
<tr>
<td>ES-4.5 Biocontrols</td>
<td>ES-109</td>
</tr>
<tr>
<td>ES-4.6 Larval Control</td>
<td>ES-110</td>
</tr>
<tr>
<td>ES-4.7 Adult Control</td>
<td>ES-130</td>
</tr>
<tr>
<td>ES-4.8 Impacts from Mosquito-Borne Disease under the Long-Term Plan</td>
<td>ES-154</td>
</tr>
<tr>
<td>ES-5. Alternatives Considered</td>
<td>ES-160</td>
</tr>
<tr>
<td>ES-5.1 No Action (Continue the Current Program)</td>
<td>ES-160</td>
</tr>
<tr>
<td>ES-5.2 Other IPM Alternatives</td>
<td>ES-163</td>
</tr>
<tr>
<td>ES-5.3 No Vector Control Alternative</td>
<td>ES-175</td>
</tr>
<tr>
<td>ES-6. Triggers for Further Environmental Review</td>
<td>ES-179</td>
</tr>
<tr>
<td>ES-7. Roadmap to the DGEIS</td>
<td>ES-183</td>
</tr>
<tr>
<td>ES-7.1 Essential Elements of a DGEIS</td>
<td>ES-183</td>
</tr>
<tr>
<td>ES-7.2 Finding the Essential Elements</td>
<td>ES-184</td>
</tr>
<tr>
<td>Executive Summary References</td>
<td>ES-195</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY TABLES

Table ES-1. Management Activities for Minimal or No Action ... ES-41
Table ES-2. Management Activities for Minor Impacts .. ES-42
Table ES-3. Management Activities for Major Impacts .. ES-43
Table ES-4. Interim Management/Ongoing Maintenance Actions ... ES-44
Table ES-5. Source Reduction Summary .. ES-46
Table ES-6. Larvicide Decision Table .. ES-57
Table ES-7. General Adulticide Decision Parameters .. ES-77
Table ES-8. NYSDOH Four-Tiered WNV Strategy .. ES-83
Table ES-9. Ecological Habitats Associated with Study Areas ... ES-118
Table ES-10. Summary of the Human Health Risk Assessment for Larvicides ES-122
Table ES-11. Summary of Ecological Risk Assessment for Larvicides ES-128
Table ES-12. Exposure Pathways Evaluated in HHRA ... ES-134
Table ES-13. Summary of USEPA Cancer Risk Assessment Results for Residential Exposures to Permethrin under a Variety of Use Scenarios and Application Rates and Comparison to Suffolk County Application Rates .. ES-137
Table ES-14. Summary of the Human Health Risk Assessment for Adulticides ES-139
Table ES-15. Summary Descriptive Statistics of AQUATOX Predicted Annual Abundances for Organisms Evaluated Under Treated and Control Simulations ... ES-146
Table ES-16. Summary of the Ecological Risk Assessment for Adulticides ES-146
Table ES-17. Mosquito Species of Concern in Suffolk County .. ES-157
Table ES-18. Rates of WNV cases (per million population) in Suffolk County, 1999-2004 ES-158
Table ES-19. WNV Rates (per million people exposed) .. ES-158
Table ES-20. Model of Suffolk County West Nile Virus Incidence, No Mosquito Control (based on a population of 1,482,284) .. ES-176
Table ES-21. Concordance of the Long-Term Plan GEIS with SEQRA Essential Elements ES-184

EXECUTIVE SUMMARY FIGURES

Figure ES-1. 2005 Vector Control Applications and Biting Mosquito Complaints ES-153
1. **STATE ENVIRONMENTAL QUALITY REVIEW ACT CONSIDERATIONS..1**
 1.1 Introduction .. 1
 1.2 General Scope of a DGEIS .. 6
 1.2.1 Criteria for Additional Environmental Review Relating to the Annual Plan of Work 8
 1.2.2 Water Management Projects Criteria .. 10
 1.3 Project Purpose ... 11
 1.4 Project History ... 12
 1.5 Necessary Permits ... 25
 1.6 NEPA Reviews .. 25
 1.7 Completion of the SEQRA Process ... 29

2. **THE LONG-TERM MANAGEMENT PLAN.. 33**
 2.1 Existing Program ... 33
 2.2 Comparisons to Other Nearby Jurisdictions ... 42
 2.2.1 Westchester County .. 43
 2.2.2 Nassau County .. 46
 2.2.3 New York City .. 50
 2.2.4 New Jersey .. 54
 2.2.5 Connecticut (State Program) .. 58
 2.3 West Nile Virus Response Plans .. 61
 2.4 Mosquitoes of Suffolk County ... 76
 2.5 Environmental Settings of Interest for Mosquito Control ... 96
 2.6 Legal Justification for Suffolk County Vector Control ... 96
 2.7 Potential Legal and Other Constraints on the Long Term Plan ... 99
 2.7.1 General Constraints .. 99
 2.7.2 Pesticide Labels .. 101
 2.7.3 Regulations Affecting Wetlands .. 112
 2.7.3.1 Federal Regulation ... 113
 2.7.3.2 State Regulation ... 117
 2.7.3.3 County Regulation .. 123
 2.7.3.4 Local Regulation .. 123
 2.7.4 Constraints Imposed by Plans and Other Management Programs ... 131
 2.8 Mission Statement of the Long-Term Plan .. 138
 2.9 Objectives of the Long-Term Plan .. 145
 2.10 The Long-Term Plan: An Integrated Pest Management Approach .. 148
 2.10.1 Public Education .. 149
 2.10.2 Surveillance .. 154
 2.10.3 Source Reduction ... 167
 2.10.4 Biocontrols ... 185
2.10.5 Larval Control .. 186
2.10.6 Adult Control ... 201
2.10.7 Administration ... 244
2.10.8 Other Elements of the Long-Term Plan 253

SECTION 2 REFERENCES .. 254

3. SUFFOLK COUNTY BACKGROUND INFORMATION 261

3.1 General Physical Data ... 261
3.1.1 Long Island Geography ... 261
3.1.2 Suffolk County Geology ... 267
3.1.3 Geohydrology of Suffolk County 270
3.1.4 Suffolk County Surface Waters 272
3.1.5 Suffolk County Wetlands ... 277
3.1.6 Suffolk County Natural Systems 280
3.1.7 Rare, Threatened, and Endangered Species of Suffolk County 281
3.1.8 Suffolk County Meteorology and Air Quality 286
3.1.9 Suffolk County Political Divisions 289

3.2 General Demographic Data ... 292

3.3 Mosquito-borne Disease .. 295
3.3.1 Mosquito-borne Disease Overview 295
3.3.1.1 Malaria .. 295
3.3.1.2 Yellow Fever .. 295
3.3.1.3 Dengue Fever .. 296
3.3.1.4 Filariasis .. 297
3.3.1.5 Encephalitis .. 298

3.3.2 West Nile Virus ... 300
3.3.2.1 General Information on WNV 300
3.3.2.2 Serosurveys for WNV ... 303
3.3.2.3 WNV Serosurvey Summary 308
3.3.2.4 Ecological Impacts from WNV 309
 3.3.2.4.1. Mammals ... 309
 3.3.2.4.2. Birds .. 311
 3.3.2.4.3. Impacts to Bird Populations on Long Island 317
3.3.2.5. Horses and WNV ... 327
3.3.3 Eastern Equine Encephalitis 328
3.3.4 Recent History of Mosquito-borne Disease in Suffolk County 332
3.3.5 Additional Impacts from Mosquito Biting 336
3.3.6 Novel Disease Threats for Suffolk County 338
3.3.6.1 Jamestown Canyon virus 339
3.3.6.2 LaCrosse virus .. 340
3.3.6.3 Sindbis virus .. 341
3.3.6.4 Rift Valley fever virus .. 341
3.3.6.5 Japanese encephalitis virus ... 342
3.3.6.6 Usutu virus ... 343

3.4 Background Pesticide Uses and/or Exposures in Suffolk County .. 343
3.4.1 Introduction .. 343
3.4.2 Background Exposures to Pesticides .. 344

3.5 Baseline Impacts from Pesticides Exposures .. 367
3.5.1 Human Health Risks .. 367
3.5.2 Ecological Risks from Background Pesticide Exposures .. 387

3.6 Breast Cancer Incidence .. 390

3.7 Children’s Health and Pesticides ... 393
3.7.1 Background .. 393
3.7.2 Cancer ... 393
3.7.3 Respiratory Illness ... 406
3.7.4 Neurological Problems in Children ... 408

3.8 The Long Island Sound Lobster Research Initiative ... 409

SECTION 3 REFERENCES ... 412

4. RISK ASSESSMENT BACKGROUND INFORMATION ... 439
4.1 Evaluation Management Plan Approach .. 439
4.1.1 Purpose .. 439
4.1.2 Scope ... 439
4.1.3 Evaluated Management Options ... 441

4.2 Risk Assessment Study Areas ... 444
4.2.1 Introduction .. 444
4.2.2 Manorville .. 448
4.2.3 Dix Hills .. 452
4.2.4 Mastic Beach-Shirley .. 457
4.2.5 Davis Park .. 467
4.2.6 Study Area Pesticide Applications ... 472
4.2.7 Representativeness Across Suffolk County ... 474

4.3 Alternatives Modeled .. 474
4.3.1 Evaluation Framework .. 474
4.3.2 Pesticides .. 475
4.3.3 Larvicides ... 475
4.3.4 Adulticides .. 476
4.3.5 Chemical Repellants ... 477
4.3.6 Application Methods, Frequency, Timing .. 477

4.4 Air Modeling Description .. 479
4.4.1 Introduction .. 479
4.4.2 Literature Review Findings .. 479
4.4.3 Health Risk Assessment Requirements ... 481
4.4.4 Deliverables for Risk Analysis ... 482

SECTION 4 REFERENCES .. 484
5. SUFFOLK COUNTY WETLANDS BACKGROUND INFORMATION ... 487
 5.1 Introduction ... 487
 5.2 Introduction to Suffolk County Salt Marshes ... 488
 5.3 Impacts of Mosquito Control Ditching on Salt Marshes ... 489
 5.4 Salt Marsh Functions, Values, and Health ... 497
 5.5 Background Information on Salt Marsh Ecology ... 501
 5.5.1 Production .. 502
 5.5.1.1 Algae and Phytoplankton ... 503
 5.5.1.2 Rooted Plants ... 503
 5.5.1.3 Phragmites .. 508
 5.5.1.4 Role of Marsh Production in the Regional Ecology ... 511
 5.5.2 Consumption ... 513
 5.5.2.1 Microorganisms and Invertebrates ... 513
 5.5.2.2 Fish .. 517
 5.5.2.3 Terrestrial Species ... 520
 5.5.2.4 Birds ... 522
 5.5.3 Mosquitoes in the Salt Marsh Ecosystem ... 524
 5.5.3.1 Adult Mosquitoes as Prey .. 524
 5.5.3.2 Mosquito Larvae as Prey ... 527
 5.6 Important Suffolk County Salt Marsh Mosquitoes ... 528
 5.7 Background Information on Open Marsh Water Management (OMWM) (Progressive Water Management) ... 530
 5.7.1 Introduction ... 530
 5.7.2 Practices in the Mid Atlantic and New England States Other Than New York 533
 5.7.2.1 Maryland ... 533
 5.7.2.2 Delaware ... 534
 5.7.2.3 New Jersey .. 535
 5.7.2.4 Connecticut .. 538
 5.7.2.5 Rhode Island .. 540
 5.7.2.6 Massachusetts .. 541
 5.7.2.7 Maine .. 543
 5.7.2.8 Region 5, USFWS ... 544
 5.7.3 OMWM on Long Island ... 544
 5.7.4 Reported Effects of OMWM ... 553
 5.7.4.1 On Mosquitoes and Mosquito Control .. 553
 5.7.4.2 On the Vegetated Marsh ... 555
5.7.4.3 On Biota ... 561
5.7.4.4 Tidal Creek Functionality Issues.............................. 565
5.7.4.5 Overarching Ecological Factors............................... 565
5.7.5 OMWM as Salt Marsh Restoration 568
5.8 Fresh Water Wetlands ... 573
5.8.1 Introduction ... 573
5.8.2 Suffolk County Fresh Water Wetlands Ecological Communities............. 580
5.8.2.1 Tidal Ecosystems ... 581
5.8.2.2 Riverine Ecosystems ... 582
5.8.2.3 Lacustrine Ecosystems ... 583
5.8.2.4 Palustrine Ecosystems .. 592
5.8.3 Generalized Distribution of Fresh Water Wetlands in Suffolk County 600
5.9 Notable Suffolk County Fresh Water Wetlands Mosquitoes 608
5.10 Primary Study Areas and Wertheim National Wildlife Refuge OMWM Demonstration Project Site Descriptions ... 612
5.10.1 PSA Methodology .. 614
5.10.2 Crab Meadow .. 616
5.10.3 West Meadow .. 621
5.10.4 Captree Island West .. 624
5.10.5 Havens Point .. 629
5.10.6 Johns Neck Creek ... 634
5.10.7 Stillman Creek and Namkee Creek 638
5.10.8 Pepperidge Hall ... 645
5.10.9 Pickman-Remmer ... 649
5.10.10 Pine Neck ... 655
5.10.11 Stokes Poges .. 659
5.10.12 West Gilgo Beach ... 663
5.10.13 Gilgo Island .. 668
5.10.14 West Watch Hill ... 671
5.10.15 Hubbard Creed ... 675
5.10.16 Cedar Beach .. 681
5.10.17 Long Beach Bay .. 684
5.10.18 Pipes Cove .. 689
5.10.19 Carlls River Corridor .. 693
5.10.20 Manorville Red Maple Swamp 700
5.10.21 Mastic Freshwater Complex .. 704
5.10.21.1 Location, Size, and Ownership.. 704
5.10.22 Wertheim National Wildlife Reserve... 708

SECTION 5 REFERENCES.. 712

6. EARLY ACTION PROJECTS... 733

6.1 Wertheim National Wildlife Refuge Open Marsh Water Management Demonstration Project.. 734

6.2 Impacts to Caged Organisms from Vector Control Pesticides Experiment, Part 1: Impacts to Biota... 747
6.2.1 Background Information.. 747
6.2.2 Tests for Impacts to Biota... 753

6.3 Impacts to Caged Organisms from Vector Control Pesticides Experiment, Part 2: Pesticide Aquatic Fate and Transport.. 763

6.4 Impacts to Caged Organisms from Vector Control Pesticides Experiment, Part 3: Benthic Sampling for Impacts from Seasonal Exposure to Pesticides.. 769
6.4.1 Sample Collection and Processing... 770
6.4.2 Data Analysis.. 771

6.5 Wertheim National Wildlife Refuge – Seatuck National Wildlife Refuge Marsh History Determination Project.. 772
6.5.1 Background... 772
6.5.2 Methods... 776
6.5.3 Results.. 780
6.5.4 Analysis.. 785
6.5.5 Summary... 787

6.6 Mosquito Ditch Conveyance of Pollutants Experiment...................... 788
6.6.1 Introduction... 788
6.6.2 Site Selection... 790
6.6.3 Methods.. 793
6.6.4 Results.. 798
6.6.5 Discussion... 806
6.6.6 Summary... 809

6.7 Keystone Marsh Invertebrate Species and Larvicide Survey................ 809
6.7.1 Introduction... 809
6.7.2 Sampling Procedures.. 813
6.7.3 Data... 813
6.7.4 Discussion... 814

6.8 Spotted Turtle Research in Napeague Marsh...................................... 815
6.8.1 Introduction... 815
6.8.2 Study Goals ... 818
6.8.3 Methods ... 818
6.8.4 Results ... 822
6.8.5 Discussion ... 827
6.9 Catchbasins Mosquito Breeding Survey ... 828
 6.9.1 Introduction ... 828
 6.9.2 Study Areas ... 829
 6.9.3 Methodology ... 831
 6.9.4 Results ... 831
 6.9.5 Conclusions ... 832
6.10 Recharge Basin Breeding Survey ... 833
 6.10.1 Introduction ... 833
 6.10.2 Study Sites ... 833
 6.10.3 Methods ... 835
 6.10.4 Results ... 835
 6.10.5 Discussion ... 836
6.11 Non-standard Control Measures Efficacy Tests ... 837
 6.11.1 Introduction ... 837
 6.11.2 Test Sites ... 840
 6.11.3 Methods ... 844
 6.11.4 Results ... 845
 6.11.5 Discussion ... 848
SECTION 6 REFERENCES ... 850
7. IMPACT ASSESSMENT OF THE LONG-TERM PLAN ... 855
 7.1 Introduction to the Analysis Method ... 855
 7.2 Introduction to the Long-Term Plan ... 861
 7.3 Impacts of the Long-Term Plan: Part 1, Public Outreach And Education 862
 7.3.1 Current IPM Program ... 862
 7.3.2 Long-Term Plan ... 866
 7.4 Impacts of the Long-Term Plan: Part 2, Surveillance ... 869
 7.4.1 Current IPM Program ... 869
 7.4.2 Long-Term Plan ... 872
 7.5 Impacts of the Long-Term Plan: Part 3, Source Reduction ... 874
 7.5.1 Current IPM Program ... 874
 7.5.2 Long-Term Plan ... 875
7.6 Impacts of the Long-Term Plan: Part 4, Water Management ... 877
7.6.1 Introduction .. 877
7.6.2 Long-Term Plan (Wetlands Management Plan) Impact Assessment 883
7.6.3 Summary .. 936
7.7 Impacts of the Long-Term Plan: Part 5, Biocontrols .. 943
7.7.1 Current Program .. 943
7.7.2 Long-Term Plan ... 946
7.8 Impacts of the Long-Term Plan: Part 6, Larval Control ... 948
7.8.1 Introduction .. 948
7.8.2 Current Program ... 948
7.8.2.1 Quantitative Risk Assessment for Bti, Bs, and Methoprene .. 949
 7.8.2.1.1 Introduction and Background .. 949
 7.8.2.1.2 Compounds Evaluated .. 953
 7.8.2.1.3 Conceptual Model ... 953
 7.8.2.1.4 Human Health Risk Assessment ... 968
 7.8.2.1.5 Ecological Risk Assessment ... 969
7.8.2.2 Special Considerations Regarding Human Breast Cancer 988
7.8.2.3 Special Considerations Regarding Potential Toxicity to Children 988
7.8.2.4 Long-Term Plan Field Work Results ... 989
7.8.2.5 Additional Considerations Regarding the Toxicity and Potential Ecological Impacts of Methoprene .. 993
7.8.2.6 Impacts of Application Methods .. 1019
7.8.2.7 Efficacy of the Current Program .. 1021
7.8.2.8 Resistance Management ... 1028
7.8.3 Long-Term Plan .. 1028
7.9 Impacts of Long-Term Plan: Part 7, Adult Control .. 1031
7.9.1 Introduction .. 1031
7.9.2 The Long-Term Plan .. 1032
7.9.2.1 Quantitative Risk Assessment for Resmethrin, Sumithrin, Permethrin,
 Piperonyl Butoxide, and Malathion .. 1032
 7.9.2.1.1 Introduction .. 1032
 7.9.2.1.2 Compounds Evaluated .. 1032
 7.9.2.1.3 Conceptual Model .. 1035
 7.9.2.1.4 Pesticide Characteristics ... 1035
 7.9.2.1.5 Toxicological Effects of Target Pesticides ... 1041
 7.9.2.1.6 Human Health Risk Assessment .. 1044
Suffolk County Vector Control and Wetlands Management Long-Term Plan
Draft Generic Environmental Impact Statement May 3, 2006

7.9.2.1.7. Other Evaluations of Potential Human Health Risks 1074
7.9.2.1.8. Ecological Risk Assessment.. 1079
7.9.2.2 Qualitative Risk Assessment for Natural Pyrethrum................. 1118
7.9.2.3 Special Considerations Regarding Human Breast Cancer 1119
7.9.2.4 Special Considerations Regarding Potential Toxicity to Children...... 1128
7.9.2.5 Long-Term Plan Field Work Results.. 1131
7.9.2.6 Efficacy of the Current Program.. 1134
7.9.2.7 Relative Effects on Mosquito-borne Disease.............................. 1137
7.9.2.8 Resistance Management... 1138

7.10 Impacts of the Long-Term Plan: Part 8, Management Structure........... 1139
7.11 Impacts of the Long-Term Plan: Part 9, Risks from Mosquito-borne Disease........ 1141
7.11.1 Relative Effects on Mosquito-borne Disease............................... 1141
7.11.2 Mosquito-borne Disease Impacts under the Current Program............ 1142
7.11.3 Mosquito-borne Disease Risks Under the Long-Term Plan............... 1160

SECTION 7 REFERENCES.. 1162

8. IMPACT ASSESSMENT OF INTEGRATED PEST MANAGEMENT ALTERNATIVES TO THE LONG-TERM PLAN .. 1189
8.1 Introduction.. 1189
8.2 Impacts of IPM Alternatives: Part 1, Public Outreach and Education............... 1191
8.2.1 Current IPM Program.. 1191
8.2.2 Alternative IPM Considerations .. 1191
8.3 Impacts of IPM Alternatives: Part 2, Surveillance................................ 1192
8.3.1 Current IMP Program... 1193
8.3.2 Alternative IPM Considerations.. 1193
8.4 Impacts of IPM Alternatives: Part 3, Source Reduction............................. 1194
8.4.1 Current IPM Program... 1194
8.4.2 Alternative IPM Considerations.. 1195
8.5 Impacts of IPM Alternatives: Part 4, Water Management....................... 1195
8.5.1 Current IPM Program... 1195
8.5.2 Alternative IPM Considerations.. 1196
8.6 Impacts of IPM Alternatives: Part 5, Biocontrols.................................. 1197
8.6.1 Current IPM Program... 1197
8.6.2 Alternative IPM Considerations.. 1197
8.7 Impacts of IPM Alternatives: Part 6, Larval Control.............................. 1197
8.7.1 Current IPM Program... 1197
8.7.2 Alternative IPM Considerations.. 1198

Cashin Associates, P.C. xv
12.2 Other IPM Alternatives ... 1263
12.3 No Mosquito Control ... 1264

SECTION 12 REFERENCES ... 1265

13. IMPACT ASSESSMENT CONCLUSIONS ... 1267
13.1 Human Health ... 1267
13.2 The Environment ... 1269
13.3 Alternatives .. 1272

14. MITIGATION OF POTENTIAL IMPACTS OF THE LONG-TERM PLAN 1275
14.1 Mitigations of Potential Impacts Associated with Long-Term Plan Public Education and Outreach .. 1275
14.2 Mitigations of Potential Impacts Associated with Long-Term Plan Surveillance 1275
14.3 Mitigations of Potential Impacts Associated with Long-Term Plan Source Reduction 1276
14.4 Mitigations of Potential Impacts Associated with Long-Term Plan Water Management .. 1276
14.5 Mitigations of Potential Impacts Associated with Long-Term Plan Biocontrols 1290
14.6 Mitigations of Potential Impacts Associated with Long-Term Plan Larval Controls ... 1291
14.7 Mitigations of Potential Impacts Associated with Long-Term Plan Adult Controls 1293
14.8 Mitigations of Potential Impacts Associated with Long-Term Plan Programmatic Considerations .. 1295

15. CUMULATIVE IMPACTS OF THE LONG-TERM PLAN .. 1297
16. UNAVOIDABLE ADVERSE IMPACTS OF THE LONG-TERM PLAN 1299

SECTION 16 REFERENCES ... 1300

17. IRRETRIEVABLE COMMITMENT OF RESOURCES IN IMPLEMENTING THE LONG-TERM PLAN 1301
18. SCOPING CONCORDANCE .. 1303

LIST OF TABLES

Table 1-1. TAC Attendees and Participants .. 16
Table 1-2. CAC Attendees and Participants .. 19
Table 1-3. Wetlands Subcommittee Attendees and Participants 21
Table 2-1. Distribution of larvicide applications by habitat type, 2000-2005 36
Table 2-2. Distribution of larvicide type by habitats, 2000-2005 37
Table 2-3. Acres Treated with Adulticide under Vector Control Determinations (FINS Communities not included) ... 37
Table 2-4. SCVC Programmatic Efforts 1999-2004 .. 42
Table 2-5. Classes of New Jersey Mosquito Control Programs 57
Table 2-6. Cost Comparison Among Long Island and the Premier New Jersey Mosquito Control Programs ... 58
Table 2-7. Connecticut State Methoprene Permits, in lbs of Altosid briquets, by Town 60
Table 2-8. NYSDOH Tiered Response to WNV Threats ... 63
Table 2-9. Mosquitoes of Suffolk County ... 76
Table 2-10. Mosquitoes Found in New Jersey Light Traps in Suffolk County (2005) 78
Table 2-11. Mosquitoes Found in CDC Light Traps in Suffolk County (2002) 79
Table 2-12. Mosquitoes Found in CDC Gravid Traps in Suffolk County (2002) 80
Table 2-13. Mosquito Species of Concern in Suffolk County (as determined by SCVC and SCDHS) ... 83
Table 2-14. WNV Transmission Potential for Mosquito Species if Concern in Suffolk County 84
Table 2-15. Geographic designations for larval surveillance and the number of field crews per area. 155
Table 2-16. Fresh water wetlands with a history of EEE ... 162
Table 2-17. Fresh water wetlands with a history of WNV ... 162
Table 2-18. Management Activities for Minimal or No Action ... 178
Table 2-19. Management Activities for Minor Impacts ... 179
Table 2-20. Management Activities for Major Impacts ... 180
Table 2-21. Interim Management/Ongoing Maintenance Actions ... 181
Table 2-22. Source Reduction Summary ... 183
Table 2-23. Larvicide Decision Table .. 201
Table 2-24. Adulticide Decision Parameters ... 203
Table 2-25. NYSDOH Four-Tiered WNV Strategy ... 215
Table 2-26. General Adulticide Decision Parameters .. 238
Table 2-27. NYSDOH Four-Tiered WNV Strategy ... 243
Table 3-1. Major Soil Types in Suffolk County .. 268
Table 3-2. Species of Special Concern Found in Suffolk County .. 281
Table 3-3. Temperatures, Brookhaven National Laboratory, Upton, New York 1949-2003 287
Table 3-4. Precipitation, Brookhaven National Laboratory, Upton, New York, 1949-2003 288
Table 3-5. Age Distribution ... 292
Table 3-6. Racial Characteristics .. 292
Table 3-7. Population by Town ... 293
Table 3-8. 1999 Household Income Distribution .. 293
Table 3-9. Education Achievement (persons 25+ years old) ... 294
Table 3-10. 1999 Median Household Income by Town ... 294
Table 3-11. Major outbreaks of St. Louis encephalitis ... 300
Table 3-12. Human Cases of WNV in the US, 1999-2004 .. 303
Table 3-13. Serosurvey Results .. 308
Table 3-14. American crow CBC counts ... 320
Table 3-15. Fish crow CBC counts ... 322
Table 3-16. Blue jay CBC counts .. 323
Table 3-17. Northern cardinal CBC counts ... 325
Table 3-18. House sparrow CBC counts ... 326
Table 3-19. Comparative EEE Infection and Transmission Rates for Long Island Mosquitoes 332
Table 3-20. Mosquito Species of Concern in Suffolk County ... 335
Table 3-21. Top Three Pesticides Used in New York State 2002 .. 346
Table 3-22. Surface Water Pesticides Detections ... 361
Table 3-23. Surface Water Pesticides Detections, continued .. 362
Table 3-24. Surface Water Pesticides Detections, continued .. 362
Table 3-25. Sediment Pesticide Detections ... 363
Table 3-26. Sediment Pesticides Detections, continued ... 363
Table 3-27. Sediment Pesticides Detections, continued ... 364
Table 3-28. Sediment Pesticides Detections, continued ... 365
Table 3-29. Biota Pesticides Detections ... 365
Table 3-30. Biota Pesticides Detections, continued ... 366
Table 3-31. Biota Pesticides Detections, continued ... 366
Table 3-32. Biota Pesticides Detections, continued ... 366
Table 3-33. Mean Exposure and Risk (MacIntosh et al., 2001) ... 369
Table 3-34. Non-Cancer Risks from Different Pathways of Exposure .. 384
Table 3-35. Cancer Risks from Different Pathways of Exposure .. 386
Table 3-36. Summary of Epidemiologic Studies of Pesticide Exposure and Childhood Cancer 400
Table 3-37. Summary of Epidemiologic Studies of Pesticide Exposure and Respiratory Illnesses ... 407
Table 3-38. Summary of Epidemiologic Studies of Pesticide Exposure and Neurological Problems .. 408
Table 4-1. Vector Control Management Plan Characteristics for Each Study Area 443
Table 4-2. Additional Agents Considered .. 444
Table 4-3. Manorville Ethnicity .. 450
Table 4-4. Manorville Age Groups .. 450
Table 4-5. Manorville Household Incomes ... 450
Table 4-6. Dix Hills Ethnicity ... 455
Table 4-7. Dix Hills Age Groups ... 455
Table 4-8. Residential Income Percentages within the Dix Hills Study Area 455
Table 4-9. Mastic, Shirley, and Mastic Beach Ethnicity ... 460
Table 4-10. Mastic, Shirley, and Mastic Beach Age Group Percentages within 461
Table 4-11. Mastic, Shirley and Mastic Beach Household Incomes ... 461
Table 4-12. FINS Ethnicity .. 469
Table 4-13. FINS Age Groups ... 469
Table 4-14. FINS Household Income .. 470
Table 4-15. Study area adulticide application rates, frequency and timing 473
Table 4-16. Study area adulticide applications for West Nile Virus and nuisance, 2000-2004 474
Table 4-17. Pesticide & Pesticide Products Considered in the Evaluation Management Plan 475
Table 4-18. Summary of Study Area-Specific Larvicide Applications in Evaluation Management Plan 477
Table 4-19. Summary of Study Area-Specific Adulticide Applications in Evaluation Management Plan .. 477
Table 5-1. Tidal Marshes in Suffolk County (acres) ... 487
Table 5-2. Proposed First-Order Indices for Marsh Health in Suffolk County 500
Table 5-3. Major Salt Marsh Mosquitoes of Suffolk County ... 530
Table 5-4. List of Marshes Considered Under the South Shore Mainland Marshes Focus Plan 548
Table 5-5. Coastal Lowlands Ecozone Cover Types ... 576
Table 5-6. Fresh Water Tidal Marsh Characteristic Species ... 582
Table 5-7. Riverine Wetlands Characteristic Species ... 583
Table 5-8. Lacustrine Wetlands Characteristic Species ... 591
Table 5-9. Palustrine Wetlands Characteristic Species ... 599
Table 5-10. Freshwater Mosquito Species of Suffolk County and Habitat Preferences 609
Table 5-11. NYSDEC Marsh Zonation Designations ... 616
Table 5-12. Crab Meadow Tidal Inundation ... 618
Table 5-13. Crab Meadow Water Quality Data ... 619
Table 5-14. West Meadow Tidal Inundation ... 622
Table 5-15. West Meadow Water Quality Data ... 623
Table 5-16. Captree Island West-Tidal Inundation ... 626
Table 5-17. Captree Island West Water Quality Measurements and Station Water Depth 627
Table 5-18. Captree Island West-Mud Depth .. 629
Table 5-19. Havens Point Tidal Inundation ... 631
Table 5-20. Havens Point Station Water Depth and Water Quality Measurements 632
Table 5-21. Johns Neck Tidal Inundation ... 636
Table 5-22. Johns Neck Water Quality Data and Ditch Water Depth 637
Table 5-23. Stillman Creek Tidal Inundation ... 641
Table 5-24. Namkee Creek Tidal Inundation ... 641
Table 5-25. Stillman Creek Water Quality Data and Ditch Water Depth 642
Table 5-26. Namkee Creek Water Quality Data and Ditch Water Depth 643
Table 5-27. Pepperidge Hall-Water Quality Measurements .. 647
Table 5-28. Pickman-Remmer Tidal Inundation (Western Segment) 651
Table 5-29. Pickman-Remmer Water Quality Measurements (Eastern Segment) 652
Table 5-30. Pickman-Remmer Water Quality Measurements (Western Segment) 653
Table 5-31. Pine Neck Tidal Inundation ... 657
Table 5-32. Pine Neck Water Quality Measurements and Station Water Depth 658
Table 5-33. Stokes Poges Tidal Inundation .. 661
Table 5-34. Stokes-Poges and Station Water Depth and Water Quality Measurements 662
Table 5-35. Gilgo West Tidal Inundation ... 665
Table 5-36. Gilgo West Water Quality Measurements and Ditch Water Description & Depth .. 666
Table 5-37. Gilgo Island Tidal Inundation ... 670
Table 5-38. Gilgo Island Water Quality Measurements and Ditch Water Depth 670
Table 5-39. West Watch Hill Tidal Inundation .. 673
Table 5-40. West Watch Hill Water Quality Data .. 674
Table 5-41. Hubbard Creek Tidal Inundation .. 678
Table 5-42. Hubbard Creek Water Quality Measurements and Ditch Water Depth 679
Table 5-43. Cedar Beach Tidal Inundation ... 683
Table 5-44. Cedar Beach Water Quality Data and Ditch Water Depth 683
Table 5-45. Long Beach Bay Tidal Inundation .. 686
Table 5-46. Long Beach Bay Ditch Water Depth and Water Quality Measurements 687
Table 5-47. Long Beach Bay, Tidal Creek Water Quality Measurements 687
Table 5-48. Pond Water Quality Measurements ... 688
Table 5-49. Pipes Cove Tidal Inundation ... 691
Table 5-50. Pipes Cove Water Quality Data and Ditch Water Depth 691
Table 5-51. Plant Species Associated with Coastal Plain Streams 697
Table 5-52. Trees Associated with Coastal Plain Ponds ... 698
Table 5-53. Coastal Plain Pond Shrubs ... 698
Table 5-54. Coastal Plain Pond Low Water Plants ... 698
Table 5-55. Coastal Plain Pond High Water Plants ... 698
Table 5-56. Red Maple-Black Gum Swamp Shrubs ... 699
Table 5-57. Red Maple-Black Gum Swamp Herbaceous Layer and Ground Cover Plant Species ... 699
Table 5-58. Beech-Maple Mesic Transition Forest Tree Species 699
Table 5-59. Beech-Maple Mesic Transition Forest Shrub Species 699
Table 5-60. Beech-Maple Groundcover Species ... 699
Table 5-61. Coastal Plain Stream and Pond Fish Species ... 700
Table 5-62. Fish Species Present in Belmont Lake and Southards Pond 700
Table 5-63. Red Maple Hardwood Swamp Trees .. 703
Table 5-64. Red Maple Hardwood Swamp Shrubs ... 703
Table 5-65. Red Maple-Hardwood Swamp Herbaceous Layer Species 704
Table 5-66. Fauna Occurring in Red Maple Swamps ... 704
Table 5-67. Vegetation Species Identified in the Mastic Freshwater Complex 707
Table 5-68. Fauna Common to Freshwater Marshes .. 708
Table 6-1. Biological Parameters ... 740
Table 6-2. Physical Parameters ... 741
Table 6-3. Chemical Parameters ... 741
Table 6-4. Caged Fish Events ... 756
Table 6-5. Resmethrin Data Summary ... 765
Table 6-6. PBO Data Summary ... 765
Table 6-7. Methoprene Data Summary ... 765
Table 6-8. NSI Low Concentration Proficiency Results .. 769
Table 6-9. NSI High Concentration Proficiency Results ... 769
Table 6-10. Average Long-Term Accretion Rates Derived from Radioisotope Dating 784
Table 6-11. Comparison of Calendar Dates Derived by 137Cs and 210Pb Radioisotopes .. 784
Table 6-12. Sample Detections, Run-off experiment, first three samples 800
Table 6-13. Sample Detections, Run-off experiment, Flanders wet weather sample 804
Table 6-14. Gilgo Wet Weather Sampling Trace Metals Results Relative to the Unditched Marsh ... 808
Table 6-15. Gilgo Dry Weather Sampling Trace Metals Results Relative to the Unditched Marsh ... 808
Table 6-16. Flanders Dry Weather Sampling Trace metals Relative to Hubbard Marsh Offshore ... 808
Table 6-17. Number of Larvicide Applications .. 811
Table 6-18. South Shore .. 813
Table 6-19. North Shore ... 814
Table 6-20. Peconic Bay ... 814
Table 6-21. Winter Napeague Habitat Use ... 824
Table 6-22. Spring Napeague Habitat Use ... 825
Table 6-23. Summer Napeague Habitat Use .. 826
Table 6-24. Rosemary Oil Solution Ingredients .. 838
Table 6-25. Garlic Oil Solution Ingredients (all are active) .. 839
Table 6-26. Project Schedule ... 844
Table 6-27. Garlic Oil Repellant Test Results from Timber Point Golf Course 845
Table 6-28. Garlic Oil Repellant Test Results from Blydenburgh County Park 846
Table 6-29. Rosemary Oil Repellant Test Results from West Sayville Golf Course 847
Table 6-30. Rosemary Oil Repellant Test Results from Blydenburgh County Park 847
Table 6-31. Mosquito Magnet Test Results from Connetquot State Park 848
Table 7-1. Non-Intervention Marshes (Marshes with no SCVC Mosquito Problems) 937
Table 7-2. Aerially-Larvicided Salt Marshes ... 938
Table 7-3. Marshes Needing Assessment ... 940
Table 7-4. Natural Heritage Program R-T-E Species in Fresh Water Environments of Suffolk County ... 944
Table 7-5. Physical & Chemical Properties of Larvicides .. 955
Table 7-6. Ecological Habitats Associated with Study Areas 963
Table 7-7. Threatened and Endangered Animal Species Potentially Occurring in or Near Study Areas ... 966
Table 7-8. Summary of the Human Health Risk Assessment for Larvicides 969
Table 7-9. Summary of the Study Area-specific Water Body Types Evaluated 983
Table 7-10. Summary of Refined Acute Aquatic Life risks (HQs>1 denoted in blue shading) ... 986
Table 7-11. Summary of Refined Chronic Aquatic Life Risks 987
Table 7-12. Summary of Ecological Risk Assessment for Larvicides 988
Table 7-13. Methoprene Sediment Concentrations Model, One Week Half-life, and One Week Application Intervals (unit-less measures) ... 991
Table 7-14. Critical Review of Additional Methoprene Articles 997
Table 7-15. Physical and Chemical Properties of Adulticides and Synergist 1039
Table 7-16. Exposure Pathways Evaluated in HHRA .. 1048
Table 7-17. Relative Potential Dose Summary: Ratios of Potential Doses for Mon-residential Receptors in RME Scenarios as Compared to Young Child Resident RME Potential Doses 1053
Table 7-18. Non-Cancer Toxicity Criteria .. 1060
Table 7-19. Summary of Pathway-Specific HQs > 1 from the Tier I Analysis 1064
Table 7-20. Summary of Hazard Indices from the Tier II Analysis 1065
Table 7-21. Summary of USEPA Cancer Risk Assessment Results for Residential Exposures to Permethrin under a Variety of Use Scenarios and Application Rates and Comparison to Suffolk County Application Rates ... 1071
Table 7-22. Summary of the Human Health Risk Analysis for Adulticides 1074
Table 7-23. Bee Risk Quotients, Study Area Maximum Average Pesticide Concentrations 1086
Table 7-24. Bee Risk Quotients, Study Area Mean Pesticide Concentrations 1086
Table 7-25. Flying Insects that are Generally Larger than Mosquitoes (0.15 inches) 1088
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-26</td>
<td>Flying Insects that are Generally Similar in Size to Mosquitoes or Smaller (0.15 inches)</td>
<td>1089</td>
</tr>
<tr>
<td>7-27</td>
<td>NYSDEC-identified insect species of concern in the Long Island region</td>
<td>1090</td>
</tr>
<tr>
<td>7-28</td>
<td>Summary of Level 2 Refined Acute Aquatic Life risks (HQs > 1 denoted in blue shading)</td>
<td>1096</td>
</tr>
<tr>
<td>7-29</td>
<td>Summary of Level 2 Refined Chronic Aquatic Life Risks (HQs > 1 denoted in blue shading)</td>
<td>1098</td>
</tr>
<tr>
<td>7-30</td>
<td>Summary Descriptive Statistics of AQUATOX Predicted Annual Abundances for Organisms Evaluated Under Treated and Control Simulations</td>
<td>1107</td>
</tr>
<tr>
<td>7-31</td>
<td>Summary of the Ecological Risk Assessment for Adulticides</td>
<td>1117</td>
</tr>
<tr>
<td>7-32</td>
<td>Summary of epidemiologic studies of pesticide exposure and breast cancer risk</td>
<td>1123</td>
</tr>
<tr>
<td>7-33</td>
<td>Babylon Sumithrin Efficacy Test, July 31-August 5, 2000 (Treatment Date, August 4)</td>
<td>1136</td>
</tr>
<tr>
<td>7-34</td>
<td>2003 Selected CDC Light Trap Data</td>
<td>1137</td>
</tr>
<tr>
<td>7-35</td>
<td>Model of the relative risk for WNV transmission, based on Connecticut mosquito distributions</td>
<td>1143</td>
</tr>
<tr>
<td>7-36</td>
<td>Model of the relative risk for WNV transmission, based on Suffolk County 2004 mosquito distributions (effective larval control of salt marsh mosquitoes)</td>
<td>1144</td>
</tr>
<tr>
<td>7-37</td>
<td>Model of the relative risk for WNV transmission, based on Suffolk County 1994 mosquito distributions (before very effective larval control of salt marsh mosquitoes)</td>
<td>1144</td>
</tr>
<tr>
<td>7-38</td>
<td>Connecticut WNV Exposure</td>
<td>1153</td>
</tr>
<tr>
<td>7-39</td>
<td>WNV cases and exposures in Connecticut and Suffolk County, 1999-2004</td>
<td>1153</td>
</tr>
<tr>
<td>7-40</td>
<td>Rates of WNV cases (per million population) in Connecticut and Suffolk County, 1999-2004</td>
<td>1153</td>
</tr>
<tr>
<td>7-41</td>
<td>Atlantic White Cedar Swamps in Suffolk County</td>
<td>1156</td>
</tr>
<tr>
<td>8-1</td>
<td>RTP Air Modeling Results for Historical Maximum Depositions in Wertheim National Wildlife Refuge and for Maximum Average Deposition used in the ERA for Mastic-Shirley</td>
<td>1215</td>
</tr>
<tr>
<td>9-1</td>
<td>Model of Suffolk County West Nile Virus Incidence, No Mosquito Control (based on a population of 1,482,284)</td>
<td>1231</td>
</tr>
<tr>
<td>9-2</td>
<td>Model of Dix Hills West Nile Virus Incidence, No Mosquito Control (based on a total population of 22,388)</td>
<td>1231</td>
</tr>
<tr>
<td>9-3</td>
<td>Model of Mastic-Shirley West Nile Virus Incidence, No Mosquito Control (based on a total population of 41,421)</td>
<td>1231</td>
</tr>
<tr>
<td>9-4</td>
<td>Model of Manorville West Nile Virus Incidence, No Mosquito Control (based on a total population of 2,846)</td>
<td>1231</td>
</tr>
<tr>
<td>9-5</td>
<td>Model of Davis Park West Nile Virus Incidence, No Mosquito Control (based on a total population of 2,000)</td>
<td>1232</td>
</tr>
<tr>
<td>9-6</td>
<td>WNV Rates (per million people exposed)</td>
<td>1232</td>
</tr>
<tr>
<td>9-7</td>
<td>Long-Term WNV Effects Model Results</td>
<td>1234</td>
</tr>
<tr>
<td>10-1</td>
<td>Number of People Participating in Recreational Fishing in New York</td>
<td>1248</td>
</tr>
<tr>
<td>13-1</td>
<td>Comparison between Modeled and Actual WNV Cases, Suffolk County</td>
<td>1267</td>
</tr>
<tr>
<td>18-1</td>
<td>Parties Responding</td>
<td>1304</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2-1. 2003 Vector Control Adulticide Areas ... 38
Figure 2-2. Health Emergency Adulticide Areas, 2000-2004 ... 40
Figure 2-3. Salt Marsh Food Web .. 82
Figure 2-4. Surveillance Sites .. 156
Figure 2-5. New Jersey Light Trap Locations ... 158
Figure 2-6. CDC Trap Locations .. 161
Figure 2-7. Suffolk County Wetlands Screening Committee for Individual Major Restoration Projects ... 176
Figure 2-8. Vector Control Decision Tree .. 214
Figure 2-9. Health Emergency Decision Tree .. 221
Figure 3-1. Suffolk County Digital Terrain Model .. 263
Figure 3-2. Long Island Geography ... 266
Figure 3-3. Suffolk County Soils ... 269
Figure 3-4. Long Island Aquifers (after Buxton and Modica, 1992) ... 272
Figure 3-5. Suffolk County Surface Waters ... 274
Figure 3-6. Suffolk County Wetlands ... 279
Figure 3-7. Central Pine Barrens .. 281
Figure 3-8. Suffolk County Towns .. 290
Figure 3-9. Centers Associated with each Christmas Bird Count Circle 318
Figure 3-10. CBCs on Long Island from 1950-2005 .. 319
Figure 3-11. American Crow Populations for Captree from 1994 – 2005 321
Figure 3-12. Fish Crow Populations for Captree from 1994-2005 .. 322
Figure 3-13. Blue Jay Populations for Central Suffolk from 1994-2005 324
Figure 3-14. Northern Cardinal Populations for Quoque-Watermill from 1994-2005 325
Figure 3-15. House Sparrow Populations for Central Suffolk from 1994 – 2005 327
Figure 3-16. Pesticide Sampling Locations 1997-2001 ... 355
Figure 3-17. Sampling Locations with Pesticide Detections 1997-2001 356
Figure 3-18. Pesticide Sampling Locations Exceeding MCL 1997-2001 357
Figure 3-19. Incidence and Mortality Rates for Childhood Cancers (Totals and by Gender) 395
Figure 3-20. Incidence Rates for Childhood Cancers by Cancer Type 396
Figure 4-1. Risk Assessment Areas .. 445
Figure 5-1. Unditched Suffolk County Salt Marsh Locations ... 490
Figure 5-2. New Jersey Marsh after OMWM .. 538
Figure 5-3. Aerial view of an OMWM Marsh in Connecticut ... 540
Figure 5-4. Suffolk County South Shore Mainland Marsh Focus Plan 549
Figure 5-5. NYSDEC Freshwater Wetlands ... 578
Figure 5-6. NWI Freshwater Wetlands .. 579
Figure 5-7. PSA Sites Plus Wertheim NWR .. 613
Figure 6-1. Wertheim National Wildlife Site Location .. 735
Figure 6-2. Wertheim National Wildlife Areas 1, 2, 3 & 4 .. 737
Figure 6-3. Wertheim National Wildlife Area 1 Post Project .. 745
Figure 6-4. Area 2 Construction Plans ... 746
Figure 6-5. Caged Fish Early Action Project ... 754
Figure 6-6. Time series of all methoprene data at Timber Point and Johns Neck (“144 hour” data include later data points) .. 766
Figure 6-7. Time series of all resmethrin data from Johns Neck .. 767
Figure 6-8. Wertheim-Seatuck Marsh Retrospective Project ... 775
Figure 6-9. Ditching Impacts Location Map .. 792
Figure 6-10. Non-Target Invertebrate Sampled Marshes .. 812
Figure 6-11. Spotted Turtles .. 821
Figure 6-12. Drainage Structure Larvae Breeding Investigation Location Map 830
Figure 6-13. Recharge Basin Study .. 834
Figure 6-14. Alternative Testing Locations Rosemary Oil-Garlic Oil-Mosquito Magnet 841
Figure 7-1. Conceptual Model Development for the Risk Assessment 954
Figure 7-2. Average Salt Marsh Mosquitoes for Seatuck ... 1023
Figure 7-3. Average Salt Marsh Mosquitoes for Heckscher Park 1024
Figure 7-4. Average Salt Marsh Mosquitoes for West Sayville ... 1025
Figure 7-5. Average Salt Marsh Mosquitoes for Brookhaven ... 1026
Figure 7-6. Average Salt Marsh Mosquitoes for Mastic Beach ... 1027
Figure 7-7. AQUATOX Aquatic Ecosystem Representation ... 1103
Figure 7-8. AQUATOX Predicted Annual Abundances for Chironomids and Amphipods in Treated and Control Simulations .. 1108
Figure 7-9. Monte Carlo-based Distribution Results for 14-day Average Permethrin Surface Water Concentration ... 1112
Figure 7-10. 2-D Monte Carlo Trend Chart with Accompanying Certainty Bands for 14-Day Permethrin Surface Water Concentration ... 1114
Figure 7-11. Connecticut Counties ... 1147
Figure 7-12. Positive Birds and Pools by Zip Code and Population, Year 2000 1148
Figure 7-13. Positive Birds and Pools by Zip Code and Population, Year 2001 1149
Figure 7-14. Positive Birds and Pools by Zip Code and Population, Year 2002 1150
Figure 7-15. Positive Birds and Pools by Zip Code and Population, Year 2003 1151
Figure 7-16. Positive Birds and Pools by Zip Code and Population, Year 2004 1152
Figure 9-1. Positive Birds and Pools by Zip Code and Population, Year 2000 1225
Figure 9-2. Positive Birds and Pools by Zip Code and Population, Year 2001 1226
Figure 9-3. Positive Birds and Pools by Zip Code and Population, Year 2002 1227
Figure 9-4. Positive Birds and Pools by Zip Code and Population, Year 2003 1228
Figure 9-5. Positive Birds and Pools by Zip Code and Population, Year 2004 1229
LIST OF MAPS

Map 7-1. Preliminary Marsh Management Plan for Suffolk County Salt Marshes

LIST OF APPENDICES

Appendix A. Long-Term Plan
Appendix B. Wetlands Management Plan
Appendix D. Final Scope of the GEIS
Appendix E. Plan of Work
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDL</td>
<td>Suffolk County Department of Health Services Arthropod-Borne Disease Laboratory</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholinesterase</td>
</tr>
<tr>
<td>AMCA</td>
<td>American Mosquito Control Association</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ARS PPDB</td>
<td>USDA’s Agricultural Research Service Pesticide and Properties Database</td>
</tr>
<tr>
<td>ASPCA</td>
<td>American Society for the Prevention of Cruelty to Animals</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>BCFs</td>
<td>bioconcentration factors</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>BNL</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>BOCES</td>
<td>Suffolk County Board of Cooperative Educational Services</td>
</tr>
<tr>
<td>Bs</td>
<td>Bacillus sphaericus</td>
</tr>
<tr>
<td>BSL</td>
<td>Biosafety Level-3</td>
</tr>
<tr>
<td>Bti</td>
<td>Bacillus thuringiensis (var.) israelensis</td>
</tr>
<tr>
<td>CA</td>
<td>Cashin Associates, PC</td>
</tr>
<tr>
<td>CAC</td>
<td>Citizens Advisory Committee</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstract Service</td>
</tr>
<tr>
<td>CBC</td>
<td>Christmas Bird Count</td>
</tr>
<tr>
<td>CCMP</td>
<td>Comprehensive Coastal Management Plan</td>
</tr>
<tr>
<td>CD</td>
<td>Sag Harbor Conservation District</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CE</td>
<td>Cameron Engineering</td>
</tr>
<tr>
<td>CEA</td>
<td>Critical Environmental Area</td>
</tr>
<tr>
<td>CEQ</td>
<td>Suffolk County Council on Environmental Quality</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CWQGs</td>
<td>Canadian Water Quality Guidelines</td>
</tr>
<tr>
<td>CZMA</td>
<td>Coastal Zone Management Act</td>
</tr>
<tr>
<td>DEET</td>
<td>N,N-diethyl-m-toluamide</td>
</tr>
<tr>
<td>DEIS</td>
<td>Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DGEIS</td>
<td>Draft Generic Environmental Impact Statement</td>
</tr>
<tr>
<td>DHF</td>
<td>Dengue hemorrhagic fever</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EAF</td>
<td>Environmental Assessment Form</td>
</tr>
<tr>
<td>EC$_{50}$</td>
<td>median effective concentrations</td>
</tr>
<tr>
<td>ECL</td>
<td>New York State Environmental Conservation Law</td>
</tr>
<tr>
<td>EEC</td>
<td>estimated exposure concentration</td>
</tr>
<tr>
<td>EED</td>
<td>estimated exposure dose</td>
</tr>
<tr>
<td>EEE</td>
<td>Eastern equine encephalitis</td>
</tr>
<tr>
<td>EFED</td>
<td>USEPA’s Environmental Fate and Effects Division</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ELAP</td>
<td>Environmental Laboratory Approval Program</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunoabsorbent assay</td>
</tr>
</tbody>
</table>
ERA ecological risk assessment
EXPRESSION USEPA’s EXAMS-PRZM exposure simulation model
Extoxnet Extension Toxicology Network
EWG Environmental Working Group
FC formerly connected tidal wetlands
FDA Food and Drug Administration
FEMA Federal Emergency Management Agency
FIFRA Federal Insecticide, Fungicide and Rodenticide Act
FINS Fire Island National Seashore
FM fresh marsh
Fom fraction of organic carbon
FONSI Finding of No Significant Impact
GB-1111 Golden Bear-1111
GEIS Generic Environmental Impact Statement
GIS Geographical Information System
GPS Global Positioning System
HM high marsh
HQ Hazard Quotient
HSDB National Library of Medicine’s Hazardous Substances Data Bank
IARC International Agency for the Research on Cancer
IM intertidal marsh
IMM Integrated Mosquito Management
IMAs Interim Management/Ongoing Maintenance Activities
IPM Integrated Pest Management
IRED Interim Reregistration Eligibility Decision
JE Japanese encephalitis
Koc soil sorption coefficient
LAC LaCrosse encephalitis
LC50 median lethal concentration
LD50 median lethal dosage
LIRR Long Island Rail Road
LOAEC lowest observable adverse effect concentration
LOEL lowest-observable-effects level
LOI loss on ignition
LWRP Local Waterfront Revitalization Program
M average mass of chemical loaded
MCC Mosquito Control Commission
MMD mass median diameter
MMLP Mosquito Magnet Liberty Plus
MMP Mosquito Magnet Pro
MOE Margin of Exposure
MOU Memorandum of Understanding
msl mean sea level
MVE Murray Valley encephalitis
NAS National Academy of Sciences
NAWQA National Water Quality Assessment
NEPA National Environmental Protection Act
NHANES National Health and Nutrition Examination Survey
NOAA National Oceanographic and Atmospheric Administration
NOAECs no-observable-adverse-effect concentrations
NOAEL no observed adverse effect level
NOECs no observed effect concentrations
NPS National Park Service
NWI National Wetlands Inventory
NWIRP Naval Weapons Industrial Reserve Plant
NYCRR New York Code of Rules and Regulations
NYSDEC New York State Department of Environmental Conservation
NYSDOH New York State Department of Health
NYS DOS New York State Department of State
OMWM Open Marsh Water Management
OP Organophosphate
OPP USEPA’s Office of Pesticide Programs
PAH polyaromatic hydrocarbon
PBO piperonyl butoxide
PCB polychlorinated biphenyl
PCR Polymerase Chain Reaction
PDP Pesticide Data Program
PEHL Suffolk County Department of Health Services Public and Environmental Health Laboratory
PEP Peconic Estuary Program
PHL New York State Public Health Law
PRNT plaque reduction neutralization
PSA Primary Study Area
QA/QC Quality Assurance/Quality Control
RAA Risk Assessment Area
RAIS Risk Assessment Information System
RAMP Rapid Analyte Measurement Platform
RED Reregistration Eligibility Documents
RfD reference dose
RFP Request for Proposals
RUP Restricted Use Pesticide
SCC Suffolk County Charter
SCDHS Suffolk County Department of Health Services
SCDPW Suffolk County Department of Public Works
SCS USDA Soil Conservation Service
SCVC Suffolk County Department of Public Works Division of Vector Control
SEER Surveillance, Epidemiology and End Results
SEQRA State Environmental Quality Review Act
SGPA Special Groundwater Protection Area
SLE St. Louis encephalitis
STORET USEPA Storage and Retrieval database
T&E threatened and endangered
TAC Technical Advisory Committee
TCPA tetrachloroterephthalic acid
TRV toxicity reference value
TSS total suspended solids
ULV ultra-low volume
USACOE US Army Corps of Engineers
USDA US Department of Agriculture
USEPA US Environmental Protection Agency
USFWS US Fish and Wildlife Service
USGS US Geological Survey
VCMS Vector Control Management System
VEE Venezuelan equine encephalitis
VOC volatile organic compound
WEE Western equine encephalitis
WHO World Health Organization
WMHO Ward Melville Heritage Organization
WNV West Nile virus
WNWR Wertheim National Wildlife Refuge
GLOSSARY

This glossary of terms used in the Draft Generic Environmental Impact Statement is not intended to be inclusive of all terms that may be unfamiliar to a general reader. It is intended to identify some key, conceptual terms that are often used in the document. In some cases, the meaning in this document may be different or limited compared to more general usage. Many other technical terms are used in this document; most have been defined in passing or are used in standard ways.

Acute - short-term or immediate.

Adulticide - a pesticide used to kill adult mosquitoes.

Amplification vector - a vector that increases a pathogen in reservoir hosts. In particular, in Suffolk County amplification vectors increase viral infections of wild birds.

Arbovirus - a neologism, from arthropod-borne virus; therefore, a viral illness where an arthropod is the vector.

Biocontrol - use of an organism to reduce a population of a pest.

Biorational pesticide - a pesticide that was designed to explicitly use biological processes to specifically target certain kinds of pests.

Bridge vector - a vector that transmits pathogens from a reservoir hosts to humans (or some other target species). In particular, in Suffolk County bridge vectors transmit virus from birds to people and horses.

Caged Fish experiment - an Early Action Project conducted to determine the effects of operational larvicide and adulticide applications on test organisms maintained artificially in salt marsh ditches (caged fish and shrimp), that also included many other experimental aspects important to developing the Long-Term Plan and determining potential impacts associated with methoprene and resmethrin.

Catch basin - a small underground storm water structure; as used in this document, it is interchangeably a leaching pool/ring or a catch basin (technically, a catch basin holds storm water and then conveys to another structure).

Chronic - long-term

Demonstration project - intended to showcase the advantages and disadvantages of a potential mosquito control technique.
Ditch maintenance - predominantly, the use of wheeled or tracked machines to clean and regrade mosquito control ditches to improve drainage and increase water flows.

Ditch reversion - allowing natural processes to occur in a ditched marsh.

EIS (Environmental Impact Statement) - a justification of a selected action that lists impacts associated with the action, mitigates the impacts if possible, and compares the results of the analysis to similar analyses conducted on alternative plans of action.

Early Action Project - an experiment or demonstration funded by the project, to test a mosquito control technique or determine the extent of potential impacts associated with a technique or techniques.

Eastern equine encephalitis - a mosquito-borne disease, first detected in the 1930s, that has impacted domesticated animals (horses and pheasants) on Long Island but not humans; produces acute encephalitis with a high fatality rate in people; not treatable.

Fresh water mosquito - a mosquito that breeds predominantly in fresh water environments.

GEIS (Generic Environmental Impact Statement) - an EIS conducted on a program or course of action where all actions associated with the action are not specified; instead, a general discussion of the planned action is presented and analyzed, often using specific examples.

Geographical Information System (GIS) - a means of organizing data so that it is readily mapped.

Grid ditched - a means of marsh manipulation used extensively in the first half of the 20th Century to decrease mosquito breeding in salt marshes, generally employing straight-line waterways without regard for marsh nuances.

High marsh - the portion of a salt marsh that is flooded irregularly – i.e., it is not covered by daily tides, but rather by the higher tides of a month, quarter, or year; often signaled by the presence of Spartina patens (salt hay); the portion of a salt marsh where mosquitoes can breed prolifically.

IPM (Integrated Pest Management) - a means of controlling a pest population that endeavors to treat the pest in the most appropriate and environmentally-sound fashion possible, requiring information gathering, and intending to apply controls as early as possible, as limited in scope or force as possible.

Integrated Mosquito Management - IPM for mosquitoes; not used in this document as it is often not recognized as IPM.
Larvicide - a pesticide used to kill mosquitoes in their larval stages, or to otherwise prevent adult emergence.

Lead Agency - for this action, the Suffolk County Legislature; in general, the organization tasked with determining if the DEIS addressed key issues in sufficient detail so as to meet all the requirements of the SEQRA “hard look.”

Long-Term Plan - the proposed means of managing mosquitoes in Suffolk County as determined by the Long-Term Plan project; also, the document that discusses the elements of the Long-Term Plan.

Low marsh - salt marsh that is inundated by tides on a daily basis; practically determined by the presence of a tall-form *Spartina alterniflora* (smooth cordgrass) monoculture; does not support mosquito breeding.

Management plan - a synonym for the Long-Term Plan; generally, a process developed by USEPA to produce environmental management programs for complicated estuarine systems, where science is intended to drive the planning process, and to result in consensus among a variety of different stakeholders.

Mosquito pool - a sample of (usually) one species of mosquito collected from a CDC mosquito trap, and analyzed for virus presence; may consist of any number of individual mosquitoes.

NEPA (National Environmental Protection Act) - the Federal act regulating actions and decisions made by Federal agencies; also, the Federal process that may result in an environmental impact statement.

Non-target organism - an organism other than a mosquito that is affected by mosquito control activities.

No-spray List - a compendium of addresses, comprised of the locations where individuals have notified SCVC of their desire not to be treated with adulticides, and so where treatment will not occur within 150 feet under vector control conditions (the Commissioner of the Department of Health Services can waive the requirements of the no-spray list under Health Emergency conditions).

Nuisance - commonly, a problem of not-great import; for mosquito control purposes, a mosquito nuisance implies considerable impacts to quality of life. Because these two understandings of the meaning of the term are not commensurate, this document has not used nuisance to describe quality of life impacts.
OMWM (Open Marsh Water Management) - a collection of techniques designed to be used on a salt marsh (“open marsh”) that, by manipulating how water flows through the marsh (“water management”) encourages the presence of killifish in areas where mosquitoes breed, and also may limit habitat for mosquito breeding through selective physical alterations of the marsh, including excavations (pond or channel construction) or filling (thin veneers of sediment to fill microdepressions that support breeding), ditch plugging, ditch filling, etc. OMWM proper is a mosquito control practice, but often is applied in conjunction with other marsh alterations to generate marsh restoration.

Pathogen - an organism that, if transmitted to people, can cause human illness.

Pesticide - a substance designed to eliminate an organism (pest).

Pesticide label - a legal document that specifies the manner in which a pesticide can be used.

Phragmites - technically, *Phragmites australis*; also known as common reed. Capable of exceeding eight feet in height, it is a plant that has aggressively invaded or expanded into many fresh water and salt water marshes, creating a (new) monoculture. Although *Phragmites* is native to North America, the invasive type has been linked to a Eurasian genotype that may have been introduced to North America in the late 1800s.

Population surveillance - sampling of larval and adult mosquito populations to determine the species present in an area, and often to determine relative population densities.

Progressive water management - the term used to describe the environmentally-sensitive wetlands management techniques to be employed under the Long-Term Plan, where local conditions (including mosquito breeding) and landowner/land manager preferences will determine what particular actions are used; an alternative to maintenance of the existing grid ditch system.

Public health threat - a condition declared by the Commissioner of the New York State Department of Health, in response to a petition from the Commissioner of the Suffolk County Department of Health Services, based on the presence of mosquito-borne pathogens in the County; under a public health threat, control of mosquito management in the County passes from the Department of Public Works to the Department of Health Services.

Public health emergency - conditions under a public health threat that rise to the level to require emergency actions, including invoking waivers of SEQRA requirements and expedited
permit reviews by NYSDEC, as determined by the Commissioner of the Department of Health Services.

Public health emergency treatment - an adulticide application made under the terms of a declared public health emergency.

Public health nuisance - under New York State Public Health Law, a condition that may affect public health.

Public welfare - the quality of life, including enjoyment of property, minimization of health threats as is possible, and protection of the environment, expected by the general public, and generally ensured by local government.

Pyrethroid - a modern pesticide (a synthetic analog of pyrethrins) with little to no environmental persistence, commonly used for adult mosquito control, but also for other pest control applications.

Quality of life - commonly held expectations regarding worry-free activities associated with residence in or use of a certain area.

Quantitative risk assessment - a process defined by the National Academy of Sciences that relates a human health or ecological threat that causes an exposure through a defined pathway, resulting in a dosage that may or may not result in an effect. Determination of the effect depends upon the existence of the threat, pathway, exposure, and dosage – absence of or lack of knowledge concerning any element means the analysis cannot be accomplished. If the effect has a threshold, the risk assessment determines if the threshold is likely to be exceeded; if the effect has no threshold, the risk assessment determines the probability of the effect occurring.

Remote sensing - the ability to conduct monitoring without necessarily visiting the area being monitored; usually conducted through aerial or satellite image interpretation.

Repellent - something intended to reduce adult mosquito contact or presence without necessarily killing them; a substance that disrupts a blood-seeking insect’s host location ability, reducing contacts with people without reducing insect densities.

Reversion - see ditch reversion.

SEQRA (State Environmental Quality Review Act) - the State analog to NEPA; the assessment of potential impacts required for all government actions undertaken by State or local government agencies in New York State.
Salt marsh - a wetland, generally without trees or any kind of canopy, where tides control inundations, and where the water table is generally salty.

Salt marsh mosquito - commonly, a mosquito that breeds in the salt marsh; also, a particular, extremely aggressive, predominantly mammal-feeding mosquito, *Ochlerotatus (Aedes) sollicitans*.

Scoping - a process under SEQRA that determines issues that must be considered in an environmental review.

Source control - see source reduction (because control implies treatment, often with pesticides, source reduction is the preferred term).

Source reduction - elimination of mosquito breeding, most often by habitat alteration.

Surveillance - the process of sampling to determine where mosquitoes are, what mosquitoes are present, and often if the mosquitoes are infected with or carry pathogens.

Synergist - a substance that enhances the effects of a pesticide.

Synergy - when the effects of two conditions exceed the sum of the effects that might have occurred with each condition separately.

ULV (ultra-low volume) - a pesticide application, generally using relatively undiluted pesticides, that is made with very low concentrations using very fine droplets to achieve its effect. ULV applications are generally so fine that gravity does not control the movement of the pesticide; instead, it moves as carried by air currents and according to dispersive forces.

Vector - technically: a force with direction; thus, a mosquito that can transmit a pathogen in the course of blood-feeding.

Vector Control - mosquito control, generally; the division of Suffolk County Department of Public Works charged with mosquito control; in this document, mosquito control intended primarily to preserve quality of life, which in other jurisdictions is called nuisance abatement (this is not a standard usage of the term, “vector control”).

Vector control treatment - a non-Health Emergency adulticide application, where the primary (but not sole) purpose is to preserve public welfare.

Viral surveillance - sampling conducted to test for the presence of pathogens in adult mosquitoes.

West Nile virus - an untreatable, mosquito transmitted virus that can result in sometimes fatal or otherwise debilitating encephalitis, that was introduced to the US in 1999.
Wetlands - permanent or seasonal soil conditions that meet certain requirements regarding water presence or other soil factors.

Wetlands Management - making intentional choices to result in certain expected conditions in a wetlands.